The Advantages of Synthetic Oils over Mineral oils

The Advantages of Synthetic Oils over Mineral oils

Extended oil drain periods
Better wear protection and therefore extended engine life
Most synthetics give better MPG
They flow better when cold and are more thermally stable when hot
Surface-active meaning a thin layer of oil on the surfaces at all times (in ester based oils)


How Synthetic oils Achieve these Benefits

Stable Basestocks
Synthetic oils are designed from pure, uniform synthetic basestocks, they contain no contaminants or
unstable molecules which are prone to thermal and oxidative break down.
Because of their uniform molecular structure, synthetic lubricants operate with less internal and
external friction than petroleum oils which have a non-uniform molecular structure.
The result is better heat control, and less heat means less stress to the lubricant.

Higher Percentage of Basestock
Synthetic oils contain a higher percentage of lubricant basestock than petroleum oils do.
This is because multi-viscosity oils need a great deal of pour point depressant and viscosity improvers
to operate as a multigrade.
The basestocks actually do most of the lubricating. More basestocks mean a longer oil life.

Additives Used Up More Slowly
Petroleum basestocks are much more prone to oxidation than synthetic oils. Oxidation inhibitors are
needed in greater quantities in petroleum oils as they are used up more quickly.
Synthetic oils do oxidize, but at a much slower rate therefore oxidation inhibiting additives are used up
more slowly.
Synthetic oils provide for better ring seal than petroleum oils do. This minimizes blow-by and reduces
contamination by combustion by-products. As a result, corrosion inhibiting additives have less work to
do and will last much longer in a synthetic oil.

Excellent Heat Tolerance
Synthetics are simply more tolerant to extreme heat than petroleum oils are. When heat builds up
within an engine, petroleum oils quickly begin to burn off. They are more volatile. The lighter
molecules within petroleum oils turn to gas and what's left are the large molecules that are harder to
pump.
Synthetics have far more resistance as they are more thermally stable to begin with and can take
higher temperatures for longer periods without losing viscosity.

Heat Reduction
One of the major factors affecting engine life is component wear and/or failure, which is often the
result of high temperature operation. The uniformly smooth molecular structure of synthetic oils gives
them a much lower coefficient friction (they slip more easily over one another causing less friction)
than petroleum oils.
Less friction means less heat and heat is a major contributor to engine component wear and failure,
synthetic oils significantly reduce these two detrimental effects.
Since each molecule in a synthetic oil is of uniform size, each is equally likely to touch a component
surface at any given time, thus moving a certain amount of heat into the oil stream and away from the
component. This makes synthetic oils far superior heat transfer agents than conventional petroleum
oils.

Greater Film Strength
Petroleum motor oils have very low film strength in comparison to synthetics. The film strength of a
lubricant refers to it's ability to maintain a film of lubricant between two objects when extreme pressure
and heat are applied.
Synthetic oils will typically have a film strength of 5 to 10 times higher than petroleum oils of
comparable viscosity.
Even though heavier weight oils typically have higher film strength than lighter weight oils, an sae 30
or 40 synthetic will typically have a higher film strength than an sae 50 or sae 60 petroleum oil.
A lighter grade synthetic can still maintain proper lubricity and reduce the chance of metal to metal
contact. This means that you can use oils that provide far better fuel efficiency and cold weather
protection without sacrificing engine protection under high temperature, high load conditions.
Obviously, this is a big plus, because you can greatly reduce both cold temperature start-up wear and
high temperature/high load engine wear using a low viscosity oil.

Engine Deposit Reduction
Petroleum oils tend to leave sludge, varnish and deposits behind after thermal and oxidative break
down. They're better than they used to be, but it still occurs.
Deposit build-up leads to a significant reduction in engine performance and engine life as well as
increasing the chance of costly repairs.
Synthetic oils have far superior thermal and oxidative stability and they leave engines virtually varnish,
deposit and sludge-free.

Better Cold Temperature Fluidity
Synthetic oils do not contain the paraffins or other waxes which dramatically thicken petroleum oils
during cold weather. As a result, they tend to flow much better during cold temperature starts and
begin lubricating an engine almost immediately. This leads to significant engine wear reduction, and,
therefore, longer engine life.

Improved Fuel Economy
Because of their uniform molecular structure, synthetic oils are tremendous friction reducers. Less
friction leads to increased fuel economy and improved engine performance.
This means that more energy released from the combustion process can be transferred directly to the
wheels due to the lower friction. Acceleration is more responsive and more powerful, using less fuel in
the process.
In a petroleum oil, lighter molecules tend to boil off easily, leaving behind much heavier molecules
which are difficult to pump. The engine loses more energy pumping these heavy molecules than if it
were pumping lighter ones.
Since synthetic oils have more uniform molecules, fewer of these molecules tend to boil off and when
they do, the molecules which are left are of the same size and pumpability is not affected.

Synthetics are better and in many ways, they are basically better by design as they are created by
chemists in laboratories for a specific purpose, rather than being modified from something that came
out of the ground to be as good as they can for a purpose.

Cheers

Tim
 
Hi Tim, can you explain the pros and cons of synthetic oils for the gearbox? Especially in light of the problems some have had with the 197/200 box.
 
Hi

A lot of the above applies to the gearbox as well as engine. Being better at dealing with higher temperatures, more stable basestocks, better lubrication and better film strength will all help to protect gearboxes better than with a mineral oil. While gearbox oils don't have to deal with combustion byproduct contamination, like with an engine oil, they do have to deal with quite a lot of shearing forces and a stable synthetic will cope with that a lot better than a mineral oil. The better it copes with the shearing forces, the longer the oil will give optimal protection - it will remain the correct viscosity and maintain sufficient film strength to protect properly. A mineral oil will break down easier, meaning that it will either need to be replaced on a more regular basis or will not provide sufficient protection.

There are a couple of gearboxes which we deal with on a regular basis where there are often issues - the one in the 197 and the one used in Corsa/Astra VXRs (in fairness, the Renault box has nothing on the Vauxhall one in terms of self destruction). As there are know issues with both of them, I never recommend anything less than than a top quality synthetic for them and regular changes - the cost of a decent oil change is nothing compared to a gearbox rebuild. In most cars, changing the gear oil every three to five years or so is absolutely fine (in some cars that's far more than needed), but with the 197 and Astra/Corsa, I recommend changing it annually or 18 months, depending on how modified the car is and what sort of use it gets. If they have an aftermarket LSD fitted, more frequent changes are likely as that makes it harder on the oil.

I've just had a look for the standard Elf oil for the Clios and from what I can see is the Elf TRJ 75w-80

http://www.uleiauto.ro/phpeuri/oiluri/elf/1075.pdf

When I looked at that sheet, all the comments look very positive, apart from one thing that caught my eye, the first line - '........based on synthetic technology........'. That normally means that the oil is a semi-synthetic or basic hydrocracked synthetic, rather than a proper PAO or PAO/Ester blend, like the one that I suggest for those boxes. I can't be certain of that, but it's usually the case. From what I can see of the Elf 75w-80s that I can see for sale (admitedly not the TRJ), they seem too cheap to be proper synthetics.

Cheers

Tim
 
My gearbox oil just came thismorning from opie

£16 for 2l of Fuchs synthetic cant be bad



Anyone know the size of plug washer I need? I might change the oil tomorrow


Thanks
 
I know this has been covered many times, but what is the latest recommendations for a synthetic gearbox oil for my 2009 plate 200 Cup? I would have changed it before but I'm wary incase of a warranty claim that would most likely be turned down. If the better oil stops any issues, it wouldnt matter!!
 
Oilman;

I'm fitting brake lines to my clio

Which fluid would you recommend?

Is the castrol react super 4 any good? Seen it at opie for a good price

Seems alot cheaper than motul RBF600 anyway.

Will it be ok on track?

Thanks.
 
How much track use is it getting? It's okay, but there are better ones if it's seeing a lot of track use.

Cheers

Tim
 
The gulf rf800 looks very good value

Think I might go for that


I won't get the squeaky clutch pedal with this fluid will I?
 
There's no reason why that should make the pedal squeak and two bottles should be enough, but I don't have the brake capacity listed. One of the guys on here that has done a fluid change on a clio will have a more accurate answer.

Cheers

Tim
 
Geeez, I just realized, I have never changed gearbox oil in my little on ein the past 4 years :worried:
and I am using it mainly on trackdays...ghos
for motor oil, I am using Motul 300V 5W40, so I would stick to motul.
Which one would you recommend, pls?
How many litres do I need to buy, pls?
 
Some great information, I always like to understand the reasons for using better consumable products.

Thanks Tim.